If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+7b+1=0
a = 1; b = 7; c = +1;
Δ = b2-4ac
Δ = 72-4·1·1
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{5}}{2*1}=\frac{-7-3\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{5}}{2*1}=\frac{-7+3\sqrt{5}}{2} $
| -6(6n-5)=138 | | 2/3k=12.44444444 | | 15+5h=7h-12 | | e+3=-4 | | -69=-3-2(3+6v) | | -65=-2+3(3k-3) | | 0.25x-8=0.125x+8 | | 1/3x-19=8 | | 126=-3b-6(2b-6) | | -4(n-1)+n=19 | | 4(5v-1)=-125 | | 6(2-2n)+5=89 | | 3(2n-1)=9 | | -1.3=2.9-0.6x | | 54=-4x-2 | | -5/6r=-3/10 | | (80/x)=0.0805 | | 3-2t÷5=1(-1) | | 1.5^x=6.2 | | (80/x)=0.0873 | | 4p{18-(3-p)}=400 | | -6v-4=-124 | | 3-2t÷5=-1(-1) | | 3x-6(x-2)=10 | | 3x+4÷x-8=0 | | 14w=56w= | | 4x-15+x-5=90 | | (x*10)+(x*6)=360 | | 80=-49+x | | m(2+3)=25 | | m(2=3)=25 | | 2(x+3)-5=5x-3-3(1+x) |